Indian Institute of Technology Kharagpur Department of Computer Science & Engineering Spring Semester 2006

Course	:	CS 60046 Low Power Circuits & Systems	
Credits	:	3-0-0	
Faculty	:	Ajit Pal	
Lecture hours	:	WED-5, THU-4, FRI-2-3	Room #: 108, CSE Building
TA of the course	e :	Prashant Agrawal	

Scope: In recent years, power dissipation has emerged as the key issue not only for portable computers and mobile communication devices, but also for high-end systems. Reducing power dissipation is of primary importance in achieving longer battery life in portable devices. On the other hand, for high-end systems the cooling and packaging requirements are pushing the chip designers for low power alternatives. As a consequence, apart from the size, cost and performance, now-a-days power is considered as the most important constraint. The objective of this course is to provide a comprehensive coverage of different aspects of low power circuit synthesis at various levels of design hierarchy.

Prerequisite: The students should have good background on digital circuits (should have attended a course on digital circuits). No background in the area of VLSI circuits is required.

Text/Reference Books:

- T1 Sung_Mo Kang, Yusuf Leblebici, CMOS Digital Integrated Circuits, Tata Mcgrag Hill
- **T2** Neil H. E. Weste and K. Eshraghian, Principles of CMOS VLSI Design, 2nd Edition, Addison Wesley (Indian reprint).
- **T3** A. Bellamour, and M. I. Elmasri, *Low Power VLSI CMOS Circuit Design*, Kluwer Academic Press, 1995
- T3 Anantha P. Chandrakasan and Robert W. Brodersen, Low Power Digital CMOS Design, Kluwer Academic Publishers, 1995
- **R1** Kaushik Roy and Sharat C. Prasad, Low-Power CMOS VLSI Design, Wiley-Interscience, 2000

Evaluation:

Mid-term	30%
End-term	50%
Term Assessment	20%

Course Outline:

1. Basics of MOS circuits:

- MOS Transistor structure and device modeling
- MOS Inverters
- MOS Combinational Circuits Different Logic Families
- 2. Sources of Power dissipation:
 - Static Power Dissipation
 - i. Diode Leakage Power
 - ii. Subthreshold Leakage Power
 - iii. Leakage power DSM circuits
 - Dynamic Power Dissipation
 - i. Short Circuit Power
 - ii. Switching Power
 - iii. Gliching Power
 - Degrees of Freedom
- 3. Supply Voltage Scaling Approaches:
 - Technology Level Feature Size Scaling, Threshold Voltage Reduction
 - Logic Level Transistor sizing, Multiple Vt Circuits, Logic styles for Low Power, Synthesis of Low Power CMOS Circuits
 - Architecture Level Parallelism and Pipelining
 - Algorithm Level Transformations to exploit Concurrency
- 4. Switched Capacitance Minimization Approaches:
 - System Level Power Down, System Partitioning
 - Algorithm Level Concurrency, Locality, Regularity, Data Representation
 - Architecture Level Concurrency, Signal Correlation
 - Logic Level Transistor sizing, Logic Optimization
 - Layout Level Layout Optimization
 - Technology Level Advanced Packaging, SOI
- 5. Special Topics:
 - Adiabatic Switching
 - Battery-aware Synthesis