
Tutorial #5
Shared Memory & Semaphores

Anirban Lahiri & Prashant Agrawal
Department of Computer Science & Engineering

IIT Kharagpur

Computer Architecture & Operating System Course
Anirban Lahiri & Prashant Agrawal under guidance of : Profs. D. Sarkar, R. Mall, D. R. Chowdhury, P. S. Dey

25 Oct. 2005 2

Outline

Accessing Shared Memory
Race Condition
Related Functions for Shared Memory
Critical Section Problem
Structure of a Process with Critical Section
Semaphores
Using Semaphores
Related Functions for Semaphores

Computer Architecture & Operating System Course
Anirban Lahiri & Prashant Agrawal under guidance of : Profs. D. Sarkar, R. Mall, D. R. Chowdhury, P. S. Dey

25 Oct. 2005 3

Accessing Shared Memory

Process P1 Process P2
Shared Address-space

Main Memorywhile (TRUE)
{
:
count++;
:
}

Value of Count

Count

while (TRUE)
{
:
count--;
:
}

In MemoryIn Registers (P1) In Registers (P2)
Count = 0

Count = 1

Count = -1

readP1 Count = 0

inc & writeP1 Count = 1

Count = 0 readP2

Count = -1 dec & writeP2

Computer Architecture & Operating System Course
Anirban Lahiri & Prashant Agrawal under guidance of : Profs. D. Sarkar, R. Mall, D. R. Chowdhury, P. S. Dey

25 Oct. 2005 4

Race Condition

“ It is a situation where several processes access and
manipulate the same data concurrently, and the
outcome of the execution depends on the particular
order in which the access takes place. ”

Ref: Operating System Concepts, Silberschatz & Galvin (5th edition); Pg. 157

Computer Architecture & Operating System Course
Anirban Lahiri & Prashant Agrawal under guidance of : Profs. D. Sarkar, R. Mall, D. R. Chowdhury, P. S. Dey

25 Oct. 2005 5

Race Condition

E.g.

Value of Count
In MemoryIn Registers (P1) In Registers (P2)
Count = 0

Count = -1

Count = 1

readP1 Count = 0

inc & writeP1 Count = 1

Count = 0 readP2

Count = -1 dec & writeP2

1 2

4

3

Value of Count
In MemoryIn Registers (P1) In Registers (P2)
Count = 0

Count = 1

Count = -1

readP1 Count = 0

inc & writeP1 Count = 1

Count = 0 readP2

Count = -1 dec & writeP2

1 2

3

4

Case 1

Case 2

Computer Architecture & Operating System Course
Anirban Lahiri & Prashant Agrawal under guidance of : Profs. D. Sarkar, R. Mall, D. R. Chowdhury, P. S. Dey

25 Oct. 2005 6

Related Functions for Shared Memory

shmget()
To create a shared memory segment

shmat()
To attach a shared memory segment to a process

shmdt()
To detach a shared memory segment from a process

shmctl()
To receive information on a shared memory segment, set the
owner, group, and permissions of a shared memory segment,
or destroy a segment

Computer Architecture & Operating System Course
Anirban Lahiri & Prashant Agrawal under guidance of : Profs. D. Sarkar, R. Mall, D. R. Chowdhury, P. S. Dey

25 Oct. 2005 7

Critical Section Problem

In a multi-process system, each process has a segment
of code, called a critical section, in which the process
may be changing some common data.
This common data may be one or more variables,
tables, files, etc

while (TRUE)
{
:
count++;
:
}

while (TRUE)
{
:
count--;
:
}

Process P1 Process P2

Critical Section

Computer Architecture & Operating System Course
Anirban Lahiri & Prashant Agrawal under guidance of : Profs. D. Sarkar, R. Mall, D. R. Chowdhury, P. S. Dey

25 Oct. 2005 8

Critical Section Problem

The execution of critical sections by the processes
should be mutually exclusive in time
i.e. when one process is executing in its critical section then no

other process is allowed to execute in its critical section
This is referred to as the critical section problem

Computer Architecture & Operating System Course
Anirban Lahiri & Prashant Agrawal under guidance of : Profs. D. Sarkar, R. Mall, D. R. Chowdhury, P. S. Dey

25 Oct. 2005 9

Structure of a Process with Critical Section

repeat

entry section

exit section

critical section

remainder section

until false;

Figure: Structure of a process Pi with critical section

Process_Pi ()
{

}

Computer Architecture & Operating System Course
Anirban Lahiri & Prashant Agrawal under guidance of : Profs. D. Sarkar, R. Mall, D. R. Chowdhury, P. S. Dey

25 Oct. 2005 10

Semaphores

A semaphore is a protected variable that is used to
synchronize access to shared data in a multi-process
environment
A semaphore can be accessed only by the following
atomic operations

WAIT (Semaphore S)
{

while S ≤ 0 /*wait*/ ;
S = S-1;

}

SIGNAL (Semaphore S)
{

S = S+1;
}

INIT (Semaphore S)
{

S = 1;
}

Computer Architecture & Operating System Course
Anirban Lahiri & Prashant Agrawal under guidance of : Profs. D. Sarkar, R. Mall, D. R. Chowdhury, P. S. Dey

25 Oct. 2005 11

Using Semaphores

A semaphore may be used by a number of processes to
synchronize access to a shared data

repeat

WAIT(S)

SIGNAL(S)

critical section

remainder section

until false;

Process_Pi ()
{

}

Computer Architecture & Operating System Course
Anirban Lahiri & Prashant Agrawal under guidance of : Profs. D. Sarkar, R. Mall, D. R. Chowdhury, P. S. Dey

25 Oct. 2005 12

Related Functions for Semaphores

semget()
To create a semaphore

semop()
To perform wait and signal operations on a semaphore

semctl()
To perform control operations on the semaphore , e.g.
destroying a semaphore

Computer Architecture & Operating System Course
Anirban Lahiri & Prashant Agrawal under guidance of : Profs. D. Sarkar, R. Mall, D. R. Chowdhury, P. S. Dey

25 Oct. 2005 13

References

Operating System Concepts by Silberschatz and Galvin
http://www.ecst.csuchico.edu/~beej/guide/ipc/semaphores.html
http://www.csm.astate.edu/~rossa/semab.html
http://www.cim.mcgill.ca/~franco/OpSys-304-427/lecture-notes/node31.html

Linux man pages

http://www.ecst.csuchico.edu/~beej/guide/ipc/semaphores.html
http://www.csm.astate.edu/~rossa/semab.html
http://www.cim.mcgill.ca/~franco/OpSys-304-427/lecture-notes/node31.html

Computer Architecture & Operating System Course
Anirban Lahiri & Prashant Agrawal under guidance of : Profs. D. Sarkar, R. Mall, D. R. Chowdhury, P. S. Dey

25 Oct. 2005 14

“The most important thing in communication is to
hear what isn’t being said”

- Peter Ducker

“The most important thing in communication is to
hear what isn’t being said”

- Peter Ducker

	Tutorial #5�Shared Memory & Semaphores
	Outline
	Accessing Shared Memory
	Race Condition
	Race Condition
	Related Functions for Shared Memory
	Critical Section Problem
	Critical Section Problem
	Structure of a Process with Critical Section
	Semaphores
	Using Semaphores
	Related Functions for Semaphores
	References

